Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.447
1.
Front Immunol ; 15: 1352330, 2024.
Article En | MEDLINE | ID: mdl-38694513

Introduction: COVID-19 patients can develop autoantibodies against a variety of secreted and membrane proteins, including some expressed on lymphocytes. However, it is unclear what proportion of patients might develop anti-lymphocyte antibodies (ALAb) and what functional relevance they might have. Methods: We evaluated the presence and lytic function of ALAb in the sera of a cohort of 85 COVID-19 patients (68 unvaccinated and 17 vaccinated) assigned to mild (N=63), or moderate/severe disease (N=22) groups. Thirty-seven patients were followed-up after recovery. We also analyzed in vivo complement deposition on COVID-19 patients' lymphocytes and examined its correlation with lymphocyte numbers during acute disease. Results: Compared with healthy donors (HD), patients had an increased prevalence of IgM ALAb, which was significantly higher in moderate/severe disease patients and persisted after recovery. Sera from IgM ALAb+ patients exhibited complement-dependent cytotoxicity (CDC) against HD lymphocytes. Complement protein C3b deposition on patients' CD4 T cells was inversely correlated with CD4 T cell numbers. This correlation was stronger in moderate/severe disease patients. Discussion: IgM ALAb and complement activation against lymphocytes may contribute to the acute lymphopenia observed in COVID-19 patients.


Autoantibodies , COVID-19 , Complement Activation , Immunoglobulin M , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/blood , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Female , Middle Aged , Autoantibodies/blood , Autoantibodies/immunology , Complement Activation/immunology , SARS-CoV-2/immunology , Aged , Adult , Lymphocytes/immunology , Prevalence , CD4-Positive T-Lymphocytes/immunology , Lymphopenia/immunology , Lymphopenia/blood , Complement C3b/immunology
2.
Thorax ; 78(4): 383-393, 2023 04.
Article En | MEDLINE | ID: mdl-35354645

BACKGROUND: One hallmark of sepsis is the reduced number of lymphocytes, termed lymphopenia, that occurs from decreased lymphocyte proliferation or increased cell death contributing to immune suppression. Histone modification enzymes regulate immunity by their epigenetic and non-epigenetic functions; however, the role of these enzymes in lymphopenia remains elusive. METHODS: We used molecular biological approaches to investigate the high expression and function of a chromatin modulator protein arginine N-methyltransferase 4 (PRMT4)/coactivator-associated arginine methyltransferase 1 in human samples from septic patients and cellular and animal septic models. RESULTS: We identified that PRMT4 is elevated systemically in septic patients and experimental sepsis. Gram-negative bacteria and their derived endotoxin lipopolysaccharide (LPS) increased PRMT4 in B and T lymphocytes and THP-1 monocytes. Single-cell RNA sequencing results indicate an increase of PRMT4 gene expression in activated T lymphocytes. Augmented PRMT4 is crucial for inducing lymphocyte apoptosis but not monocyte THP-1 cells. Ectopic expression of PRMT4 protein caused substantial lymphocyte death via caspase 3-mediated cell death signalling, and knockout of PRMT4 abolished LPS-mediated lymphocyte death. PRMT4 inhibition with a small molecule compound attenuated lymphocyte death in complementary models of sepsis. CONCLUSIONS: These findings demonstrate a previously uncharacterised role of a key chromatin modulator in lymphocyte survival that may shed light on devising therapeutic modalities to lessen the severity of septic immunosuppression.


Lymphopenia , Protein-Arginine N-Methyltransferases , Sepsis , Animals , Humans , Arginine/genetics , Caspase 3/genetics , Caspase 3/immunology , Chromatin , Lipopolysaccharides/pharmacology , Lymphopenia/etiology , Lymphopenia/genetics , Lymphopenia/immunology , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Sepsis/complications , Sepsis/genetics , Sepsis/immunology
3.
Signal Transduct Target Ther ; 7(1): 57, 2022 02 23.
Article En | MEDLINE | ID: mdl-35197452

The coronavirus disease 2019 (COVID-19) is a highly transmissible disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that poses a major threat to global public health. Although COVID-19 primarily affects the respiratory system, causing severe pneumonia and acute respiratory distress syndrome in severe cases, it can also result in multiple extrapulmonary complications. The pathogenesis of extrapulmonary damage in patients with COVID-19 is probably multifactorial, involving both the direct effects of SARS-CoV-2 and the indirect mechanisms associated with the host inflammatory response. Recognition of features and pathogenesis of extrapulmonary complications has clinical implications for identifying disease progression and designing therapeutic strategies. This review provides an overview of the extrapulmonary complications of COVID-19 from immunological and pathophysiologic perspectives and focuses on the pathogenesis and potential therapeutic targets for the management of COVID-19.


Acute Kidney Injury/complications , COVID-19/complications , Cytokine Release Syndrome/complications , Disseminated Intravascular Coagulation/complications , Lymphopenia/complications , Myocarditis/complications , Pulmonary Embolism/complications , Acute Kidney Injury/drug therapy , Acute Kidney Injury/immunology , Acute Kidney Injury/virology , Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/virology , Clinical Trials as Topic , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Disseminated Intravascular Coagulation/drug therapy , Disseminated Intravascular Coagulation/immunology , Disseminated Intravascular Coagulation/virology , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/virology , Humans , Immunity, Innate/drug effects , Immunologic Factors/therapeutic use , Lymphopenia/drug therapy , Lymphopenia/immunology , Lymphopenia/virology , Myocarditis/drug therapy , Myocarditis/immunology , Myocarditis/virology , Pulmonary Embolism/drug therapy , Pulmonary Embolism/immunology , Pulmonary Embolism/virology , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , COVID-19 Drug Treatment
4.
J Immunol ; 208(3): 685-696, 2022 02 01.
Article En | MEDLINE | ID: mdl-34987111

Immune response dysregulation plays a key role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis. In this study, we evaluated immune and endothelial blood cell profiles of patients with coronavirus disease 2019 (COVID-19) to determine critical differences between those with mild, moderate, or severe COVID-19 using spectral flow cytometry. We examined a suite of immune phenotypes, including monocytes, T cells, NK cells, B cells, endothelial cells, and neutrophils, alongside surface and intracellular markers of activation. Our results showed progressive lymphopenia and depletion of T cell subsets (CD3+, CD4+, and CD8+) in patients with severe disease and a significant increase in the CD56+CD14+Ki67+IFN-γ+ monocyte population in patients with moderate and severe COVID-19 that has not been previously described. Enhanced circulating endothelial cells (CD45-CD31+CD34+CD146+), circulating endothelial progenitors (CD45-CD31+CD34+/-CD146-), and neutrophils (CD11b+CD66b+) were coevaluated for COVID-19 severity. Spearman correlation analysis demonstrated the synergism among age, obesity, and hypertension with upregulated CD56+ monocytes, endothelial cells, and decreased T cells that lead to severe outcomes of SARS-CoV-2 infection. Circulating monocytes and endothelial cells may represent important cellular markers for monitoring postacute sequelae and impacts of SARS-CoV-2 infection during convalescence and for their role in immune host defense in high-risk adults after vaccination.


COVID-19/immunology , Endothelial Cells/immunology , Monocytes/immunology , SARS-CoV-2 , Adolescent , Adult , Age Factors , Aged , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Biomarkers , CD56 Antigen/analysis , COVID-19/blood , COVID-19/epidemiology , Child , Comorbidity , Endothelial Cells/chemistry , Female , Flow Cytometry , Humans , Hypertension/epidemiology , Hypertension/immunology , Immunophenotyping , Lymphocyte Activation , Lymphocyte Subsets/immunology , Lymphopenia/etiology , Lymphopenia/immunology , Male , Middle Aged , Monocytes/chemistry , Neutrophils/immunology , Obesity/epidemiology , Obesity/immunology , Platelet Endothelial Cell Adhesion Molecule-1/analysis , SARS-CoV-2/immunology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Young Adult
5.
J Allergy Clin Immunol ; 149(1): 302-314, 2022 01.
Article En | MEDLINE | ID: mdl-34089750

BACKGROUND: Pediatric endogenous Cushing syndrome (eCs) is mainly caused by pituitary corticotropin-producing adenomas, and most glucocorticoid-dependent effects progressively regress upon tumor removal. eCs reproduces long-term, high-dose glucocorticoid therapy, representing a clean, natural, and unbiased model in which to study glucocorticoid bona fide effects on immunity. OBJECTIVE: We performed extensive immunologic studies in otherwise healthy pediatric patients with eCs before and 6 to 13 months after tumor resection, as well as in in vitro glucocorticoid-treated control cells. METHODS: Flow cytometry, immunoblotting, enzyme-linked immunosorbent assay, real-time quantitative PCR, and RNA-Seq techniques were used to characterize patients' and in vitro glucocorticoid treated cells. RESULTS: Reduced thymic output, decreased naive T cells, diminished proliferation, and increased T-cell apoptosis were detected before surgery; all these defects eventually normalized after tumor removal in patients. In vitro studies also showed increased T-cell apoptosis, with correspondingly diminished NF-κB signaling and IL-21 levels. In this setting, IL-21 addition upregulated antiapoptotic BCL2 expression and rescued T-cell apoptosis in a PI3K pathway-dependent manner. Similar and reproducible findings were confirmed in eCs patient cells as well. CONCLUSIONS: We identified decreased thymic output and lymphocyte proliferation, together with increased apoptosis, as the underlying causes to T-cell lymphopenia in eCs patients. IL-21 was decreased in both natural and in vitro long-term, high-dose glucocorticoid environments, and in vitro addition of IL-21 counteracted the proapoptotic effects of glucocorticoid therapy. Thus, our results suggest that administration of IL-21 in patients receiving long-term, high-dose glucocorticoid therapy may contribute to ameliorate lymphopenia and the complications associated to it.


Cushing Syndrome/immunology , Cytokines/immunology , Glucocorticoids/pharmacology , Lymphopenia/immunology , T-Lymphocytes/drug effects , Adolescent , Apoptosis/drug effects , Child , Cushing Syndrome/blood , Cushing Syndrome/genetics , Cytokines/blood , Cytokines/genetics , Female , Humans , Leukocyte Count , Lymphopenia/blood , Lymphopenia/genetics , Male , T-Lymphocytes/immunology
6.
Eur J Med Genet ; 65(1): 104387, 2022 Jan.
Article En | MEDLINE | ID: mdl-34768012

Pathogenic variants of PLCG2 encoding phospholipase C gamma 2 (PLCγ2) were first reported in 2012 and their clinical manifestations vary widely. PLCG2-associated antibody deficiency and immune dysregulation (PLAID) and autoinflammation and PLCγ2-associated antibody deficiency and immune dysregulation (APLAID) are representative examples of PLCG2 pathogenic variants. In this report, we describe a 17-year-old male with recurrent blistering skin lesions, B-cell lymphopenia, and asthma. Distinct from the patients in previous reports, this patient had the heterozygous de novo c.2119T > C missense variant (NM_002661.4) resulting in a serine to proline amino acid substitution (p.Ser707Pro). The variant located to the PLCγ2 C-terminal Src homology 2 (cSH2) domain, which is a critical site for the restriction of intrinsic enzyme activity. This variant could be classified as "likely pathogenic" according to American College of Medical Genetics and Genomics guidelines. Laboratory results showed a reduction in circulating B cells without a decrease of serum IgG and IgA. Our findings expand the variety of clinical phenotypes for PLCG2 missense variants.


B-Lymphocytes , Blister/genetics , Lymphopenia/genetics , Phospholipase C gamma/genetics , Adolescent , Blister/immunology , Humans , Lymphopenia/immunology , Male , Mutation, Missense , Recurrence , Whole Genome Sequencing
7.
Signal Transduct Target Ther ; 6(1): 418, 2021 12 10.
Article En | MEDLINE | ID: mdl-34893580

The systemic processes involved in the manifestation of life-threatening COVID-19 and in disease recovery are still incompletely understood, despite investigations focusing on the dysregulation of immune responses after SARS-CoV-2 infection. To define hallmarks of severe COVID-19 in acute disease (n = 58) and in disease recovery in convalescent patients (n = 28) from Hannover Medical School, we used flow cytometry and proteomics data with unsupervised clustering analyses. In our observational study, we combined analyses of immune cells and cytokine/chemokine networks with endothelial activation and injury. ICU patients displayed an altered immune signature with prolonged lymphopenia but the expansion of granulocytes and plasmablasts along with activated and terminally differentiated T and NK cells and high levels of SARS-CoV-2-specific antibodies. The core signature of seven plasma proteins revealed a highly inflammatory microenvironment in addition to endothelial injury in severe COVID-19. Changes within this signature were associated with either disease progression or recovery. In summary, our data suggest that besides a strong inflammatory response, severe COVID-19 is driven by endothelial activation and barrier disruption, whereby recovery depends on the regeneration of the endothelial integrity.


Antibodies, Viral/blood , Blood Proteins/metabolism , COVID-19/diagnosis , Cytokine Release Syndrome/diagnosis , Endothelium, Vascular/virology , Lymphopenia/diagnosis , SARS-CoV-2/pathogenicity , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Chemokine CXCL10/blood , Chemokine CXCL9/blood , Cluster Analysis , Convalescence , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Disease Progression , Endothelium, Vascular/immunology , Granulocytes/immunology , Granulocytes/virology , Hematopoietic Cell Growth Factors/blood , Hepatocyte Growth Factor/blood , Humans , Intensive Care Units , Interleukin-12 Subunit p40/blood , Interleukin-6/blood , Interleukin-8/blood , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Lectins, C-Type/blood , Lymphopenia/immunology , Lymphopenia/mortality , Lymphopenia/virology , Plasma Cells/immunology , Plasma Cells/virology , Survival Analysis , T-Lymphocytes/immunology , T-Lymphocytes/virology
8.
Int J Immunopathol Pharmacol ; 35: 20587384211056495, 2021.
Article En | MEDLINE | ID: mdl-34931551

BACKGROUND: Lymphopenia is common in intracerebral hemorrhage (ICH) and may predispose to severe infections such as sepsis. However, what specific kind of lymphocytes subsets decreases is still unclear. We investigated the impact of lymphocytes subsets on post-critical ICH infections and mortality. METHODS: Consecutive ICH patients (admitted to a single center between January 2017 and January 2018) were prospectively assessed to evaluate the following main parameters: peripheral blood lymphocytes, infections, and clinical scores. Predicting factors of sepsis were measured using multivariate Logistic regressions analysis. A Kaplan-Meier survival curve was performed to compare the mortality between septic and nonseptic patients. Survival status was evaluated by multivariate Cox regression analysis. RESULTS: In total, 112 critical ICH cases were enrolled including 29 septic patients. Total counts of lymphocytes decreased accordingly with reduced lymphocyte subsets, especially natural killer (NK) cells and CD8+T lymphocytes after ICH. Septic patients had a higher incidence of pneumonia, a longer length of stay, higher 90-day mortality, and worse long-term outcomes. Multivariate Logistic regression analysis showed venous catheterization, high APACHE-II score (>15), low GCS score (3-5), and NK cells percentages on admission were independently associated with ensuing sepsis. After sepsis, the percentages of CD4+T and NK cells percentages decreased, CD8+T cells increased followed by a significantly decreased CD4/CD8 ratio. Bloodstream infection alone directly affected the survival status of patients with sepsis. CONCLUSIONS: Critical ICH patients underwent immune dysfunction and NK cells deficiency could favor nosocomial threatening sepsis after ICH.


Cerebral Hemorrhage , Critical Care , Cross Infection , Killer Cells, Natural , Lymphopenia , Sepsis , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/mortality , Cerebral Hemorrhage/therapy , China/epidemiology , Critical Care/methods , Critical Care/statistics & numerical data , Critical Illness/mortality , Critical Illness/therapy , Cross Infection/diagnosis , Cross Infection/epidemiology , Cross Infection/etiology , Cross Infection/prevention & control , Female , Hospitals, University , Humans , Immunity, Cellular/immunology , Intensive Care Units/statistics & numerical data , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Lymphocyte Subsets/classification , Lymphopenia/complications , Lymphopenia/diagnosis , Lymphopenia/immunology , Male , Middle Aged , Prognosis , Sepsis/blood , Sepsis/etiology , Sepsis/therapy
9.
Viruses ; 13(12)2021 11 24.
Article En | MEDLINE | ID: mdl-34960627

Foot-and-mouth disease (FMD) is characterized by a pronounced lymphopenia that is associated with immune suppression. However, the mechanisms leading to lymphopenia remain unclear. In this study, the number of total CD4+, CD8+ T cells, B cells, and NK cells in the peripheral blood were dramatically reduced in C57BL/6 mice infected with foot-and-mouth disease virus (FMDV) serotype O, and it was noted that mice with severe clinical symptoms had expressively lower lymphocyte counts than mice with mild or without clinical symptoms, indicating that lymphopenia was associated with disease severity. A further analysis revealed that lymphocyte apoptosis and trafficking occurred after FMDV infection. In addition, coinhibitory molecules were upregulated in the expression of CD4+ and CD8+ T cells from FMDV-infected mice, including CTLA-4, LAG-3, 2B4, and TIGIT. Interestingly, the elevated IL-10 in the serum was correlated with the appearance of lymphopenia during FMDV infection but not IL-6, IL-2, IL-17, IL-18, IL-1ß, TNF-α, IFN-α/ß, TGF-ß, and CXCL1. Knocking out IL-10 (IL-10-/-) mice or blocking IL-10/IL-10R signaling in vivo was able to prevent lymphopenia via downregulating apoptosis, trafficking, and the coinhibitory expression of lymphocytes in the peripheral blood, which contribute to enhance the survival of mice infected with FMDV. Our findings support that blocking IL-10/IL-10R signaling may represent a novel therapeutic approach for FMD.


Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/virology , Interleukin-10/immunology , Lymphopenia/virology , Animals , Apoptosis , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/immunology , Interleukin-10/genetics , Killer Cells, Natural/immunology , Lymphocyte Count , Lymphopenia/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
10.
Front Immunol ; 12: 715023, 2021.
Article En | MEDLINE | ID: mdl-34659204

Emerging evidence has unveiled the secondary infection as one of the mortal causes of post-SARS-CoV-2 infection, but the factors related to secondary bacterial or fungi infection remains largely unexplored. We here systematically investigated the factors that might contribute to secondary infection. By clinical examination index analysis of patients, combined with the integrative analysis with RNA-seq analysis in the peripheral blood mononuclear cell isolated shortly from initial infection, this study showed that the antibiotic catabolic process and myeloid cell homeostasis were activated while the T-cell response were relatively repressed in those with the risk of secondary infection. Further monitoring analysis of immune cell and liver injury analysis showed that the risk of secondary infection was accompanied by severe lymphocytopenia at the intermediate and late stages and liver injury at the early stages of SARS-CoV-2. Moreover, the metagenomics analysis of bronchoalveolar lavage fluid and the microbial culture analysis, to some extent, showed that the severe pneumonia-related bacteria have already existed in the initial infection.


Bacterial Infections/epidemiology , COVID-19/pathology , Coinfection/epidemiology , Coinfection/mortality , Mycoses/epidemiology , Adult , Aged , Aged, 80 and over , Bacterial Infections/mortality , Bronchoalveolar Lavage Fluid/microbiology , CD4 Lymphocyte Count , Female , Humans , Leukocytes, Mononuclear/immunology , Liver/injuries , Liver/virology , Lymphopenia/immunology , Male , Middle Aged , Mycoses/mortality , Retrospective Studies , Risk Factors , SARS-CoV-2/immunology , T-Lymphocytes/immunology
11.
Front Immunol ; 12: 757843, 2021.
Article En | MEDLINE | ID: mdl-34691079

Most persons living with HIV (PLWH) experience a significant restoration of their immunity associated with successful inhibition of viral replication after antiretroviral therapy (ART) initiation. Nevertheless, with the robust quantitative and qualitative restoration of CD4+ T-lymphocytes, a fraction of patients co-infected with tuberculosis develop immune reconstitution inflammatory syndrome (TB-IRIS), a dysregulated inflammatory response that can be associated with significant tissue damage. Several studies underscored the role of adaptive immune cells in IRIS pathogenesis, but to what degree T lymphocyte activation contributes to TB-IRIS development remains largely elusive. Here, we sought to dissect the phenotypic landscape of T lymphocyte activation in PLWH coinfected with TB inititating ART, focusing on characterization of the profiles linked to development of TB-IRIS. We confirmed previous observations demonstrating that TB-IRIS individuals display pronounced CD4+ lymphopenia prior to ART initiation. Additionally, we found an ART-induced increase in T lymphocyte activation, proliferation and cytotoxicity among TB-IRIS patients. Importantly, we demonstrate that TB-IRIS subjects display higher frequencies of cytotoxic CD8+ T lymphocytes which is not affected by ART. Moreover, These patients exhibit higher levels of activated (HLA-DR+) and profilerative (Ki-67+) CD4+ T cells after ART commencenment than their Non-IRIS counterparts. Our network analysis reveal significant negative correlations between Total CD4+ T cells counts and the frequencies of Cytotoxic CD8+ T cells in our study population which could suggest the existance of compensatory mechanisms for Mtb-infected cells elimination in the face of severe CD4+ T cell lymphopenia. We also investigated the correlation between T lymphocyte activation profiles and the abundance of several inflammatory molecules in plasma. We applied unsupervised machine learning techniques to predict and diagnose TB-IRIS before and during ART. Our analyses suggest that CD4+ T cell activation markers are good TB-IRIS predictors, whereas the combination of CD4+ and CD8+ T cells markers are better at diagnosing TB-IRIS patients during IRIS events Overall, our findings contribute to a more refined understanding of immunological mechanisms in TB-IRIS pathogenesis that may assist in new diagnostic tools and more targeted patient management.


Acquired Immunodeficiency Syndrome/immunology , Immune Reconstitution Inflammatory Syndrome/immunology , Lymphocyte Activation , T-Lymphocyte Subsets/immunology , Tuberculosis/immunology , Acquired Immunodeficiency Syndrome/complications , Acquired Immunodeficiency Syndrome/drug therapy , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Biomarkers , CD4-CD8 Ratio , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic , Humans , Immune Reconstitution Inflammatory Syndrome/blood , Immune Reconstitution Inflammatory Syndrome/etiology , Immunophenotyping , Lymphopenia/etiology , Lymphopenia/immunology , Mycobacterium tuberculosis/immunology , Observational Studies as Topic/statistics & numerical data , Randomized Controlled Trials as Topic/statistics & numerical data , Retrospective Studies , Tuberculosis/complications
12.
Front Immunol ; 12: 759558, 2021.
Article En | MEDLINE | ID: mdl-34650571

Adoptive cell therapy (ACT) using chimeric antigen receptor (CAR) T cells holds impressive clinical outcomes especially in patients who are refractory to other kinds of therapy. However, many challenges hinder its clinical applications. For example, patients who undergo chemotherapy usually have an insufficient number of autologous T cells due to lymphopenia. Long-term ex vivo expansion can result in T cell exhaustion, which reduces the effector function. There is also a batch-to-batch variation during the manufacturing process, making it difficult to standardize and validate the cell products. In addition, the process is labor-intensive and costly. Generation of universal off-the-shelf CAR T cells, which can be broadly given to any patient, prepared in advance and ready to use, would be ideal and more cost-effective. Human induced pluripotent stem cells (iPSCs) provide a renewable source of cells that can be genetically engineered and differentiated into immune cells with enhanced anti-tumor cytotoxicity. This review describes basic knowledge of T cell biology, applications in ACT, the use of iPSCs as a new source of T cells and current differentiation strategies used to generate T cells as well as recent advances in genome engineering to produce next-generation off-the-shelf T cells with improved effector functions. We also discuss challenges in the field and future perspectives toward the final universal off-the-shelf immunotherapeutic products.


Immunotherapy, Adoptive , Induced Pluripotent Stem Cells/immunology , Lymphopenia/therapy , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Humans , Induced Pluripotent Stem Cells/cytology , Lymphopenia/immunology , T-Lymphocytes/cytology
13.
JCI Insight ; 6(19)2021 10 08.
Article En | MEDLINE | ID: mdl-34622798

Hypomorphic RAG1 or RAG2 mutations cause primary immunodeficiencies and can lead to autoimmunity, but the underlying mechanisms are elusive. We report here a patient carrying a c.116+2T>G homozygous splice site mutation in the first intron of RAG1, which led to aberrant splicing and greatly reduced RAG1 protein expression. B cell development was blocked at both the pro-B to pre-B transition and the pre-B to immature B cell differentiation step. The patient B cells had reduced B cell receptor repertoire diversity and decreased complementarity determining region 3 lengths. Despite B cell lymphopenia, the patient had abundant plasma cells in the BM and produced large quantities of IgM and IgG Abs, including autoantibodies. The proportion of naive B cells was reduced while the frequency of IgD-CD27- double-negative (DN) B cells, which quickly differentiated into Ab-secreting plasma cells upon stimulation, was greatly increased. Immune phenotype analysis of 52 patients with primary immunodeficiency revealed a strong association of the increased proportion of DN B and memory B cells with decreased number and proportion of naive B cells. These results suggest that the lymphopenic environment triggered naive B cell differentiation into DN B and memory B cells, leading to increased Ab production.


Autoantibodies/immunology , Autoimmune Diseases/genetics , B-Lymphocytes/immunology , Granuloma/genetics , Homeodomain Proteins/genetics , Immunologic Deficiency Syndromes/genetics , Lymphopoiesis/genetics , Receptors, Antigen, B-Cell/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Child , Cord Blood Stem Cell Transplantation , Fatal Outcome , Granuloma/immunology , Granuloma/therapy , Homeodomain Proteins/metabolism , Homozygote , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/therapy , Immunologic Memory/immunology , Lymphopenia/genetics , Lymphopenia/immunology , Lymphopoiesis/immunology , Male , Plasma Cells/immunology , RNA Splice Sites/genetics , V(D)J Recombination/genetics
14.
J Immunol Res ; 2021: 9822706, 2021.
Article En | MEDLINE | ID: mdl-34712742

BACKGROUND: Neutralizing antibody (nAb) response is generated following infection or immunization and plays an important role in the protection against a broad of viral infections. The role of nAb during clinical progression of coronavirus disease 2019 (COVID-19) remains little known. METHODS: 123 COVID-19 patients during hospitalization in Tongji Hospital were involved in this retrospective study. The patients were grouped based on the severity and outcome. The nAb responses of 194 serum samples were collected from these patients within an investigation period of 60 days after the onset of symptoms and detected by a pseudotyped virus neutralization assay. The detail data about onset time, disease severity and laboratory biomarkers, treatment, and clinical outcome of these participants were obtained from electronic medical records. The relationship of longitudinal nAb changes with each clinical data was further assessed. RESULTS: The nAb response in COVID-19 patients evidently experienced three consecutive stages, namely, rising, stationary, and declining periods. Patients with different severity and outcome showed differential dynamics of the nAb response over the course of disease. During the stationary phase (from 20 to 40 days after symptoms onset), all patients evolved nAb responses. In particular, high levels of nAb were elicited in severe and critical patients and older patients (≥60 years old). More importantly, critical but deceased COVID-19 patients showed high levels of several proinflammation cytokines, such as IL-2R, IL-8, and IL-6, and anti-inflammatory cytokine IL-10 in vivo, which resulted in lymphopenia, multiple organ failure, and the rapidly decreased nAb response. CONCLUSION: Our results indicate that nAb plays a crucial role in preventing the progression and deterioration of COVID-19, which has important implications for improving clinical management and developing effective interventions.


Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Biomarkers/blood , COVID-19/pathology , Cytokines/blood , Female , Humans , Lymphopenia/blood , Lymphopenia/immunology , Male , Middle Aged , Neutralization Tests , Retrospective Studies , Severity of Illness Index
15.
PLoS Pathog ; 17(9): e1009850, 2021 09.
Article En | MEDLINE | ID: mdl-34473802

The Coronavirus Disease 2019 (COVID-19) is caused by the betacoronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus that can mediate asymptomatic or fatal infections characterized by pneumonia, acute respiratory distress syndrome (ARDS), and multi-organ failure. Several studies have highlighted the importance of B and T lymphocytes, given that neutralizing antibodies and T cell responses are required for an effective immunity. In addition, other reports have described myeloid cells such as macrophages and monocytes play a major role in the immunity against SARS-CoV-2 as well as dysregulated pro-inflammatory signature that characterizes severe COVID-19. During COVID-19, neutrophils have been defined as a heterogeneous group of cells, functionally linked to severe inflammation and thrombosis triggered by degranulation and NETosis, but also to suppressive phenotypes. The physiological role of suppressive neutrophils during COVID-19 and their implications in severe disease have been poorly studied and is not well understood. Here, we discuss the current evidence regarding the role of neutrophils with suppressive properties such as granulocytic myeloid-derived suppressor cells (G-MDSCs) and their possible role in suppressing CD4+ and CD8+ T lymphocytes expansion and giving rise to lymphopenia in severe COVID-19 infection.


COVID-19/immunology , Lymphopenia/complications , Neutrophils/immunology , SARS-CoV-2/physiology , Animals , COVID-19/blood , COVID-19/complications , Humans , Lymphopenia/blood , Lymphopenia/immunology , Neutrophils/virology , SARS-CoV-2/immunology , Severity of Illness Index
16.
Mol Immunol ; 138: 121-127, 2021 10.
Article En | MEDLINE | ID: mdl-34392110

AIMS: Coronavirus disease 2019 (COVID-19) is a novel viral infection threatening worldwide health as currently there exists no effective treatment strategy and vaccination programs are not publicly available yet. T lymphocytes play an important role in antiviral defenses. However, T cell frequency and functionality may be affected during the disease. MATERIAL AND METHODS: Total blood samples were collected from patients with mild and severe COVID-19, and the total lymphocyte number, as well as CD4+ and CD8 + T cells were assessed using flowcytometry. Besides, the expression of exhausted T cell markers was evaluated. The levels of proinflammatory cytokines were also investigated in the serum of all patients using enzyme-linked immunesorbent assay (ELISA). Finally, the obtained results were analyzed along with laboratory serological reports. RESULTS: COVID-19 patients showed lymphopenia and reduced CD4+ and CD8 + T cells, as well as high percentage of PD-1 expression by T cells, especially in severe cases. Serum secretion of TNF-α, IL-1ß, and IL-2 receptor (IL-2R) were remarkably increased in patients with severe symptoms, as compared with healthy controls. Moreover, high levels of triglyceride (TG) and low density lipoprotein cholesterol (LDL-C), were correlated with the severity of the disease. CONCLUSION: Reduced number and function of T cells were observed in COVID-19 patients, especially in severe patients. Meanwhile, the secretion of proinflammatory cytokines was increased as the disease developed. High level of serum IL-2R was also considered as a sign of lymphopenia. Additionally, hypercholesterolemia and hyperlipidemia could be important prognostic factors in determining the severity of the infection.


CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Lymphopenia/immunology , SARS-CoV-2/immunology , Adult , Aged , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , COVID-19/metabolism , COVID-19/virology , Cholesterol, LDL/blood , Cytokines/blood , Cytokines/immunology , Cytokines/metabolism , Disease Progression , Female , Humans , Lymphocyte Count , Lymphopenia/blood , Lymphopenia/virology , Male , Middle Aged , Prognosis , SARS-CoV-2/physiology , Severity of Illness Index , Triglycerides/blood
17.
J Infect Dis ; 224(8): 1333-1344, 2021 10 28.
Article En | MEDLINE | ID: mdl-34374752

BACKGROUND: Lymphopenia is a key feature for adult patients with coronavirus disease 2019 (COVID-19), although it is rarely observed in children. The underlying mechanism remains unclear. METHODS: Immunohistochemical and flow cytometric analyses were used to compare the apoptotic rate of T cells from COVID-19 adults and children and apoptotic responses of adult and child T cells to COVID-19 pooled plasma. Biological properties of caspases and reactive oxygen species were assessed in T cells treated by COVID-19 pooled plasma. RESULTS: Mitochondria apoptosis of peripheral T cells were identified in COVID-19 adult patient samples but not in the children. Furthermore, increased tumor necrosis factor-α and interleukin-6 in COVID-19 plasma induced mitochondria apoptosis and caused deoxyribonucleic acid damage by elevating reactive oxygen species levels of the adult T cells. However, the child T cells showed tolerance to mitochondrial apoptosis due to mitochondria autophagy. Activation of autophagy could decrease apoptotic sensitivity of the adult T cells to plasma from COVID-19 patients. CONCLUSIONS: Our results indicated that the mitochondrial apoptosis pathway was activated in T cells of COVID-19 adult patients specifically, which may shed light on the pathophysiological difference between adults and children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 ).


COVID-19/complications , Lymphopenia/blood , SARS-CoV-2/immunology , T-Lymphocytes/pathology , Adolescent , Adult , Age Factors , Aged , Apoptosis/immunology , Autophagy , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Child , Child, Preschool , Humans , Infant , Lymphopenia/immunology , Lymphopenia/pathology , Lymphopenia/virology , Male , Middle Aged , Mitochondria/immunology , Mitochondria/pathology , Reactive Oxygen Species/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology
18.
Viruses ; 13(7)2021 07 20.
Article En | MEDLINE | ID: mdl-34372615

Lymphopenia is a frequent hematological manifestation, associated with a severe course of COVID-19, with an insufficiently understood pathogenesis. We present molecular genetic immunohistochemical, and electron microscopic data on SARS-CoV-2 dissemination and viral load (VL) in lungs, mediastinum lymph nodes, and the spleen of 36 patients who died from COVID-19. Lymphopenia <1 × 109/L was observed in 23 of 36 (63.8%) patients. In 12 of 36 cases (33%) SARS-CoV-2 was found in lung tissues only with a median VL of 239 copies (range 18-1952) SARS-CoV-2 cDNA per 100 copies of ABL1. Histomorphological changes corresponding to bronchopneumonia and the proliferative phase of DAD were observed in these cases. SARS-CoV-2 dissemination into the lungs, lymph nodes, and spleen was detected in 23 of 36 patients (58.4%) and was associated with the exudative phase of DAD in most of these cases. The median VL in the lungs was 12,116 copies (range 810-250281), lymph nodes-832 copies (range 96-11586), and spleen-71.5 copies (range 0-2899). SARS-CoV-2 in all cases belonged to the 19A strain. A immunohistochemical study revealed SARS-CoV-2 proteins in pneumocytes, alveolar macrophages, and bronchiolar epithelial cells in lung tissue, sinus histiocytes of lymph nodes, as well as cells of the Billroth pulp cords and spleen capsule. SARS-CoV-2 particles were detected by transmission electron microscopy in the cytoplasm of the endothelial cell, macrophages, and lymphocytes. The infection of lymphocytes with SARS-CoV-2 that we discovered for the first time may indicate a possible link between lymphopenia and SARS-CoV-2-mediated cytotoxic effect.


COVID-19/virology , Lung/virology , Lymph Nodes/virology , Lymphopenia/virology , Mediastinum/virology , SARS-CoV-2/isolation & purification , Spleen/virology , Aged , Aged, 80 and over , COVID-19 Testing , Female , Humans , Immunohistochemistry , Lung/pathology , Lymphopenia/immunology , Male , Middle Aged , Multiplex Polymerase Chain Reaction , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Load
20.
Cells ; 10(8)2021 08 07.
Article En | MEDLINE | ID: mdl-34440787

Adoptive cell therapy (ACT) using tumor-reactive T cells is a promising form of immunotherapy to specifically target cancer. However, the survival and functional maintenance of adoptively transferred T cells remains a challenge, ultimately limiting their efficacy. Here, we evaluated the use of recombinant IL7-Fc in ACT. In a lymphopenic murine melanoma model, IL7-Fc treatment led to the enhanced inhibition of tumor growth with an increased number of adoptively transferred CD8+ T cells in tumor tissue and tumor-draining lymph nodes. Additionally, IL7-Fc further enhanced anti-tumor responses that were induced by recombinant human IL2 in the same mouse model. In contrast, in an immunocompetent murine melanoma model, IL7-Fc dampened the anti-tumor immunity. Further, IL7-Fc decreased the proliferation of adoptively transferred and immune-activated tumor-reactive CD8+ T cells in immunocompetent mice by inducing the massive expansion of endogenous T cells, thereby limiting the space for adoptively transferred T cells. Our data suggest that IL7-Fc is principally beneficial for enhancing the efficacy of tumor-reactive T-cells in lymphopenic conditions for the ACT.


Immunoglobulin Fc Fragments/immunology , Immunotherapy, Adoptive/methods , Interleukin-7/immunology , Lymphopenia/immunology , Melanoma, Experimental/therapy , Recombinant Fusion Proteins/administration & dosage , Animals , Bone Marrow/drug effects , Bone Marrow/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/drug effects , Cell Differentiation/immunology , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Interleukin-7/genetics , Interleukin-7/metabolism , Leukocyte Count , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Lymphopenia/metabolism , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myeloid Cells/cytology , Myeloid Cells/drug effects , Myeloid Cells/immunology , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism
...